

Resolución Consejo Directivo FCEyN Nº 429 / 2025

Santa Rosa, 13 de octubre de 2025

VISTO:

El Expediente. Nº 633/2025, iniciado por Secretaría Académica, Programas actualizados Dpto. de Matemática - año 2025, y

CONSIDERANDO:

Que el docente Dr. David FERREYRA a cargo de la asignatura "Variaba Compleja" que se dicta para la carrera Licenciatura en Matemática (Plan 2015), eleva el programa de la citada asignatura para su aprobación a partir del ciclo lectivo 2025 en adelante.

Que el mismo cuenta con el aval del Dr. Luciano GONZÁLEZ y de la Mesa de Carrera de la Licenciatura en Matemática.

Que en la sesión ordinaria del 09 de octubre de 2025 el Consejo Directivo aprobó, por unanimidad, el despacho presentado por la Comisión de Enseñanza.

POR ELLO:

EL CONSEJO DIRECTIVO DE LA FACULTAD DE CIENCIAS EXACTAS Y NATURALES

RESUELVE:

ARTÍCULO 1º: Aprobar el Programa de la asignatura "Variable Compleja" correspondiente a la carrera Licenciatura en Matemática (Plan 2015), a partir del ciclo lectivo 2025 en adelante, que como Anexos I, II, III, IV, V, VI y VII forma parte de la presente Resolución.

ARTÍCULO 2º: Regístrese, comuníquese. Pase a conocimiento de Secretaría Académica, Departamento de Asuntos Estudiantiles, Departamento de Matemática y Computación, del docente Dr. David FERREYRA, y del CENUP. Cumplido, archívese.

Gabriela Raquel VIDOZ – Secretaria Consejo Directivo – FCEyN - UNLPam Nora Claudia FERREYRA – Decana – FCEyN - UNLPam

ANEXO I

DEPARTAMENTO: Matemática y Computación

ACTIVIDAD CURRICULAR: Variable Compleja

CARRERA-PLAN/ES: Licenciatura en Matemática. Plan 2015

CURSO: Segundo

RÉGIMEN: Cuatrimestral, del segundo cuatrimestre.

CARGA HORARIA SEMANAL: 8hs

Teóricos: 4hs Prácticos: 4hs

CARGA HORARIA TOTAL: 120hs.

CICLO LECTIVO: 2025 en adelante

EQUIPO DOCENTE:

Dr. David Eduardo FERREYRA. Profesor Asociado Regular. Dedicación Simple.

FUNDAMENTACIÓN:

La importancia de la teoría de funciones de variable compleja para la matemática es indiscutible. Tiene su origen esencialmente en el Análisis Matemático a partir de las contribuciones de matemáticos como Gauss, Cauchy, Riemann y Weierstrass. Su inmediata conexión con la Geometría (a través de variedades complejas), a la topología (algebraica-diferencial) y a la Teoría de Números, la ubican en un lugar de privilegio dentro de las grandes áreas de las matemáticas. La idea de esta asignatura es una introducción a los fundamentos de la teoría de variable compleja. Se presenta la derivada en el sentido complejo y las funciones holomorfas haciendo énfasis en los ejemplos clásicos como los polinomios, las funciones racionales (transformadas de Möbius), la exponencial compleja y ramas del logaritmo complejo, potencias y raíces complejas. Se establecen los conceptos de integral compleja y las ideas de Cauchy (fórmula integral de Cauchy y el teorema de Cauchy), aplicaciones de estos resultados (Liouville, teorema fundamental del álgebra, principio del módulo máximo, analiticidad de las funciones holomorfas, series de potencias), singularidades (removibles, esenciales, polos), expansiones de Laurent, residuos, cálculo de integrales impropias, ceros y polos de funciones meromorfas, el teorema de Casorati-Weierstrass. Se espera que los conocimientos básicos establecidos posibiliten la posterior ampliación y profundización en el estudio del análisis complejo.

OBJETIVOS Y/O ALCANCES DE LA ASIGNATURA:

- Comprender las nociones de función holomorfa y función analítica, y su interrelación.
- Asimilar los enunciados y las aplicaciones teóricas-prácticas de los principales teoremas integrales de Cauchy.
- Saber desarrollar una función en serie de Taylor y/o de Laurent.
- Distinguir los tipos de singularidades aisladas de las funciones complejas.
- Dominar las aplicaciones del cálculo de residuos.
- Comprender los enunciados de los teoremas básicos de carácter cualitativo, como el teorema de Liouville o el principio del módulo máximo, y adquirir destreza en su aplicación a la resolución de ejercicios.

ANEXO II

ASIGNATURA: Variable Compleja.

CICLO LECTIVO: 2025 en adelante

PROGRAMA ANALÍTICO

Unidad 1: Preliminares de Análisis Compleio.

Números complejos y el plano complejo. Propiedades básicas. Formas polar, trigonométrica y exponencial de un número complejo. Sucesiones numéricas complejas. Convergencia. Conjuntos notables del plano complejo. Conexidad y compacidad. El plano complejo extendido: la proyección estereográfica.

Unidad 2: Series de potencias.

Series de números complejos. Convergencia puntual y uniforme. Criterios de convergencia. La serie geométrica compleja. Series de potencias. Límite superior e inferior de una sucesión. Radio de Cauchy-Hadamard.

Unidad 3: Funciones Analíticas (Holomorfas).

Funciones de variable compleja. Límites y continuidad. La derivada compleja. Las ecuaciones de Cauchy-Riemann. Analiticidad de series de potencias. Funciones complejas elementales. La exponencial compleja. Funciones trigonométricas complejas. El logaritmo complejo. Potencias complejas. Funciones armónicas. Aplicaciones conformes. Transformaciones de Möbius.

Unidad 4: Integración en el sentido compleio

Integrales sobre curvas. Teorema de Cauchy. Índice de una curva cerrada. La representación integral de Cauchy. Consecuencias del Teorema de Cauchy. Desigualdades de Cauchy. Teorema de Liouville. Teorema de Morera. Teorema Fundamental del Álgebra. Principio del Módulo Máximo.

Unidad 5: Series de Taylor y de Laurent

Series de funciones. Convergencia. Series de Taylor. Ceros de una función analítica. Principio de prolongación analítica. Series de Laurent.

Unidad 6: Singularidades

Funciones meromorfas. Clasificación de singularidades aisladas. Ceros de funciones analíticas. Polos. Singularidad esencial. Teorema de Casorati-Weierstrass. Teorema de los Residuos. Cálculo de residuos en polos. Evaluación de integrales complejas e integrales impropias reales. Principio del argumento y Teorema de Rouché.

ANEXO III

ASIGNATURA: Variable Compleja.

CICLO LECTIVO: 2025 en adelante

BIBLIOGRAFÍA:

- L. V. Ahlfors, Complex Analysis, McGraw-Hill, New York, 1979.
- M. Apóstol, Análisis Matemático, Reverté, S.A., España, 1979.
- J. W. Brown, R. V. Churchill, Variable compleja y aplicaciones, Mc Graw Hill, México, 2007.
- J. B. Conway, Functions of one complex variable, Springer Verlag, New York, 1986.
- D.E. Ferreyra, L.J. González, F.E. Levis, Primeros conceptos de Análisis Complejo. EdUNLPam, Colección: Libros de Texto para Estudiantes Universitarios, Nro.: 14, ISBN: 978-950-863-341-5, Argentina, 2018.
- T. W. Gamelin, Complex analysis, Springer, New York, 2003.
- J. E. Marsden, M. J. Hoffman, Basic complex analysis, W.H. Freeman, New York, 1999.
- N. Levinson, R. Redheffer, Curso de variable compleja. Reverté, México, 1990.
- G. A. Raggio, Notas de análisis complejo, Trabajos de Matemática, Serie C, 34/06, FaMAF-UNC, 2006.
- W. Rudin, Real and complex analysis, McGraw-Hill, London, 1987.
- S. M. Sasane, A. Sasane, A friendly approach to complex analysis, World scientific Publishing, USA, 2014.
- R. Shakarchi, Problems and solutions for complex analysis, Springer-Verlag, New York, 1999.
- E. M. Stein, R. Shakarchi, Complex analysis, Princeton University Press, New Jersey, 2010.

ANEXO IV

ASIGNATURA: Variable Compleja

CICLO LECTIVO: 2025 en adelante

PROGRAMA DE TRABAJOS PRÁCTICOS:

La modalidad para la práctica consiste en 4 horas semanales dedicadas a la resolución de problemas y al planteo y orientación en la resolución del resto de los ejercicios propuestos en forma individual y grupal.

Lista de Trabajos Prácticos

Trabajo Práctico N° 1: Preliminares de Análisis Complejo. Este práctico consiste en una guía de ejercicios que versa sobre los contenidos de la Unidad 1.

Trabajo Práctico N° 2: Funciones Analíticas. Este práctico consiste en una guía de ejercicios que versa sobre los contenidos de la Unidad 2.

Trabajo Práctico N° 3: Series de Potencias. Este práctico consiste en una guía de ejercicios que versa sobre los contenidos de la Unidad 3.

Trabajo Práctico N° 4: Inegración Compleja. Este práctico consiste en una guía de ejercicios que versa sobre los contenidos de la Unidad 4.

Trabajo Práctico N° 5: Series de Taylor y Laurent. Este práctico consiste en una guía de ejercicios que versa sobre los contenidos de la Unidad 5.

Trabajo Práctico N° 6: Singularidades. Este práctico consiste en una guía de ejercicios que versa sobre los contenidos de la Unidad 6.

ANEXO V

ACTIVIDADES ESPECIALES QUE SE PREVÉN

No se prevén actividades especiales.

ANEXO VI

Asignatura: Variable Compleja

Ciclo Lectivo: 2025 en adelante

PROGRAMA DE EXAMEN

Coincide con el Programa Analítico y la Guía de Trabajos Prácticos.

ANEXO VII

Asignatura: Variable Compleja

Ciclo lectivo: 2025 en adelante

METODOLOGÍA DE EVALUACIÓN Y/O OTROS REQUERIMIENTOS

Evaluaciones Parciales: Las evaluaciones consistirán en dos exámenes escritos con sus respectivos recuperatorios. Los mismos versarán sobre ejercicios del tipo de aquellos desarrollados en los trabajos prácticos. En caso de que se apruebe solamente uno de los parciales (o su respectivo recuperatorio), tienen acceso a rendir un examen adicional.

Evaluación Final: Para el estudiantado que regularice la asignatura, el examen final será oral y versará sobre los aspectos teóricos impartidos en el curso. Para el estudiantado que quede libre, previamente a la exposición oral, deberá aprobarse un examen escrito sobre los temas tratados en los trabajos prácticos.

Condiciones de regularidad: Para la regularización de esta asignatura se deberán aprobar dos parciales, teniendo cada parcial la posibilidad de ser recuperado una vez. En caso de que se apruebe solamente uno de los parciales (o su respectivo recuperatorio), tienen acceso a rendir un examen adicional.

Condiciones de promoción: La asignatura no se aprobará bajo el régimen de promoción sin examen final.

Hoja de firmas